Information Sciences 436-437 (2018) 162-177

journal homepage: www.elsevier.com/locate/ins —

Contents lists available at ScienceDirect

Information Sciences

A hybrid particle swarm optimization algorithm using n
adaptive learning strategy e

Feng Wang®*, Heng Zhang?, Kangshun Li" Zhiyi Lin¢, Jun Yang¢,

Xiao-Liang Shen®

aSchool of Computer Science, Wuhan University, Wuhan 430072, China

b College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
¢School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China

dSchool of Electrical Engineering, Wuhan University, Wuhan 430072, China

¢School of Economics and Management, Wuhan University, Wuhan 430072, China

ARTICLE INFO

ABSTRACT

Article history:

Received 5 November 2017
Revised 2 January 2018
Accepted 13 January 2018
Available online 31 January 2018

Keywords:

Particle swarm optimization
Learning strategy

Search direction
Multimodal optimization

Many optimization problems in reality have become more and more complex, which pro-
mote the research on the improvement of different optimization algorithms. The particle
swarm optimization (PSO) algorithm has been proved to be an effective tool to solve var-
ious kinds of optimization problems. However, for the basic PSO, the updating strategy is
mainly aims to learn the global best, and it often suffers premature convergence as well
as performs poorly on many complex optimization problems, especially for multimodal
problems. A hybrid PSO algorithm which employs an adaptive learning strategy (ALPSO)
is developed in this paper. In ALPSO, we employ a self-learning based candidate genera-
tion strategy to ensure the exploration ability, and a competitive learning based predic-
tion strategy to guarantee exploitation of the algorithm. To balance the exploration ability
and the exploitation ability well, we design a tolerance based search direction adjustment
mechanism. The experimental results on 40 benchmark test functions demonstrate that,
compared with five representative PSO algorithms, ALPSO performs much better than the
others in more cases, on both convergence accuracy and convergence speed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Many real-world problems which can be transferred to the optimization problems now have become more and more
complex, and are difficult to be solved by the canonical optimization algorithms. Therefore, the research on optimization
algorithms in real applications has become a promising research issue. In the past few years, lots of meta-heuristic opti-
mization algorithms have emerged [4,15,24,25,29,30]. And one of the most popular algorithm is particle swarm optimization

(PSO).

PSO is a nature-inspired evolutionary algorithm firstly proposed in 1995 by Kennedy et al. [6]. In PSO, each solution is
represented by a particle in the population with two main vectors, namely velocity and position, which are dynamically
changed according to its interactions with other particles during the evolutionary process. And the particles can adjust their
trajectories by their flying experiences in each generation which can help them fly towards a better search space. PSO can

* Corresponding author.

E-mail address: fengwang@whu.edu.cn (F. Wang).

https://doi.org/10.1016/j.ins.2018.01.027
0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.01.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.01.027&domain=pdf
mailto:fengwang@whu.edu.cn
https://doi.org/10.1016/j.ins.2018.01.027

E. Wang et al./Information Sciences 436-437 (2018) 162-177 163

be implemented easily to deal with many function optimizations with fast convergence, and in the last few decades, PSO
has been widely applied in many real optimization problems and has shown good performances, such as manufacturing
control in engineering optimization [5,16,17,22,27], and multi-source scheduling in cloud computing [9-11].

However, the basic PSO also has some drawbacks which make it get trapped in the local optimum and suffer the pre-
mature convergence, especially in the large scale complex optimization problems. Firstly, for basic PSO, the particles always
adjust their flying trajectories and converge to a single point regarding the parameter settings, and different parameter set-
tings may lead to different convergence speed. Secondly, the particles evolve according to their interactions with each other
during the search process, and the updating strategy is mainly aims to the global best particle which makes the population
lose the diversity that increases the possibilities of getting trapped in local optima.

Hence, how to improve the convergence speed as well as avert the premature convergence has become the most im-
portant research problem in PSO. In recent years, lots of research works have been done and many variants of PSO have
been put forward. These algorithms try to balance the local search ability and global search ability through the tuning of
the parameters, modification of the updating rules, designing new strategies in the evolving process and indeed get some
improvements on the convergence of the solutions. Nevertheless, with the optimization problems becoming increasingly
complex, the current algorithms still can’t guarantee a good diversity and efficiency of the solutions in reality.

In this paper, in order to overcome the above limitations, a hybrid PSO algorithm with adaptive learning based strategy
(ALPSO) is proposed, which incorporates a self-learning based candidate generation strategy to ensure exploration as well
as a competitive learning based prediction strategy to guarantee exploitation of the algorithm, and a tolerance based search
direction adjustment mechanism to well-balance exploration and exploitation.

The rest of this paper is organized as follows. A brief introduction of the standard PSO and its variants are presented in
Section 2. The details of our proposed ALPSO algorithm is described in Section 3. The experimental results and analysis on
several benchmark multimodal functions are shown in Section 4, and the conclusion is provided in Section 5.

2. PSO algorithm
2.1. Basic PSO

PSO is a swarm intelligence algorithm which was proposed based on the observation on the swarm behaviors in some
ecological system, such as birds flying, bees foraging, or social behaviors of human beings. As one of the population-based
algorithm, each particle in the population of PSO represents a possible solution of the optimization problem with two vec-
tors (velocity and position). For a problem in D-dimensional space, a particle i which with the position X; = (X1, Xj2. . .., Xip)
has a velocity V; = (vj1, vjp, ..., Vjp) when the particle is moving. During the optimization process, the velocity vector and
the position vector can be updated by the following rules:

Vig(t+1) =w-vg(t) +¢1-11- (Pg(t) = Xig(£)) +C2 - 12 - (Pgg (t) — Xjq(£))

X (t +1) = g (0) + Vg (£ + 1) Sy

Where v;; denotes the velocity of the ith particle, x;; denotes the current position of the particle. And w denotes
the inertia factor, r; and r, are two random numbers in the interval of [0, 1] which are employed to maintain the
population’s diversity, c; and c, are the accelerate coefficients which imply the relevant influence of the particles, Py =
(pbest;y, pbest;y, ..., pbestip,) is the previous best position (pbest) of the ith particle and Pgq is the global best particle (gbest)
found in the population.

2.2. Some variants of PSO

Due to the simplicity of implementation and efficiency of performance, PSO has become a promising tool for practical
applications which has attracted many researchers to study and improve its performance. Recently, many variants of PSO
algorithm have been proposed, which can be categorized into the following 3 types: 1) Parameter modification based PSO
algorithms, which focus on the modification or adjustment methods of the inertia weights (w;) and the accelerate coef-
ficients (c; and cy); 2) Population topology structure analysis based PSO algorithms, which try to use the information of
population topology to guide the search process; 3) Evolutionary learning strategy based PSO algorithms, which integrate
different evolutionary operators or use the historical information of the particles to design new strategies to improve the
performance. Although many kinds of PSO variants have been proposed to avoid premature convergence, some strategies
have been applied to keep the diversity of population and try to overcome the premature convergence, even some of them
sacrifice the performance on convergence speed, it is still unavoidable for the population getting trapped in the local optima
when dealing with difficult multimodal problems.

2.2.1. Parameter modification based PSO algorithms

As we mentioned above, the parameter setting has played a crucial role in PSO convergence behavior. Many research
works have shown that, if the inertia weight becomes larger, the particles’ speed will increase which will results in more
exploration and less exploitation, and vice versa. And since the particles are updated by the cogitative component and

164 E Wang et al./Information Sciences 436-437 (2018) 162-177

social component, the control mechanism of these two coefficient parameters is also vital to the accuracy and efficiency of
the solutions. How to find the appropriate values for the parameters is an challengeable research issue.

Shi et al. took the leading to employ an inertia weight in PSO which can loosen the restriction on velocity and control the
search process better and proposed GPSO [20]. Afterwards, different kinds of adjustment strategy on w are advocated. Some
researchers defined the inertia weight as a time-varing function [1] while some others took the adaptiveness into account
and adjusted the value of inertia weight adaptively by monitoring the evolutionary states [21]. Ratnaweera et al. proposed
a time-varying scheme for the acceleration coefficients, which help balance the global search ability and local search ability
of the algorithm [18]. Zhan et al. use the information of the population distribution and particle fitness and propose an
adaptive technique which can automatically control the inertia weight, the accreditation coefficients simultaneously[28].

2.2.2. Population topology structure analysis based PSO algorithms

In the standard PSO, the population size is fixed and each particle is evolved using the information got from all other
particles. As we know that a larger population size may increase the computation costs resulting in slow convergence while
a smaller population size may converge in local optimum. Followed by the idea of divided-and-conquer, many researchers
focus on the topology structure and proposed many multi-swarm based PSO algorithms.

Different topology structures based on the connections of neighborhood have been employed to maintain the diversity
of the solution, like LPSO [7]. Liang et al. proposed a CLPSO algorithm where every particle updates its velocity by learning
from the historical best information of different particles which help the particles learn more valuable information to guide
their search behaviors [13]. Then, they further investigated the sub-swarm method and proposed a DMS-PSO algorithm with
dynamic multi swarms, in which the population is composed of many small sub-swarms and the dynamic strategy can keep
the diversity of the population at the same time [14].

2.2.3. Evolutionary learning strategy based PSO algorithms

Since different optimization algorithms might have different strength, it is reasonable to learn or combine the strategies
used in these algorithms to help to design a new one. Many evolutionary operators are introduced to increase the diversity
of population and help PSO jump out of the local optimum. Some evolutionary algorithms, such as genetic algorithm (GA)
[3], artificial bee colony algorithm (ABC) [26] , differential evolutionary algorithm (DE) [19] have been combined with PSO
to improve the exploration ability.

Some other researchers investigated the flying behaviors of the particles and try to design proper learning strategies to
deal with the information of the particles or swarms (sub-swarms), which are helpful for the solution jumping out of local
optimum. Wang et al. designed an opposition based learning strategy where the candidates are transformed from one search
space to another, which give the candidates more chance to find the global optimal solution [23]. Li et al. designed four
different learning models by a self-learning approach and the particles are assigned with different role in the search process
only based on their local fitness landscape [8]. Different from the traditional PSO, Cheng et al. employed the competition
mechanism in which the particles are required to update their search patterns when they lose competition [2].

3. Adaptive learning based PSO algorithm (ALPSO)

As we know that all particles in original PSO learn from the global best particle to update their position and velocity
until the termination condition is reached, even though the global best particle gets trapped into local optimum. This kind
of learning mechanism makes the algorithm better in exploitation and have the feature of fast convergence but is invalid
when dealing with the problems with complex search space. Now some representative variants of PSO are proposed, in
which some strategies are used to restrict the learning object of particles to maintain the diversity of the population like
LPSO, CLPSO. These strategies make the algorithm get good performance in exploration but will slow down the convergence
rate of the algorithm.

In order to balance between exploitation and exploration, the algorithm is proposed to obtain a better performance which
is ALPSO. In ALPSO, we use a tolerance based search direction adjustment mechanism. The mechanism can make the swarm
adjust their search direction to avoid falling into a local optimum adaptively and shrink the search space. Furthermore,
we use a self-learning based candidate particle generation strategy to generate a candidate particle as a learning object
of swarm, in which the swarm can do exploration in different areas within the search space. Then, for the purpose of
ensuring the efficiency and accuracy of the algorithm, we use a potential prediction strategy to predict the potential ability
of candidate particle to lead swarm do exploitation in different dimensions.

3.1. Tolerance based search direction adjustment mechanism (TSDM)

It is well known that the swarm in original PSO is more likely to get trapped into local optimum when searching in a
complex space. For a certain dimension, the evolutionary state can be described by Fig. 1(a) where particles search for a
maximum within one dimension and the red curve illustrates the variation trend of the fitness value in this dimension. Py
is the global best particle close to a local optimum. In Fig. 1(a), it is obviously that each particle, e.g., X; and X, may search
along the direction to Py and the swarm will fall into local optimum after several iterations. Suppose f(P;)! denotes the fitness
value of the ith particle’s best position at the tth iteration. The ith particle’s current position, i.e., X; will be compared to

E. Wang et al./Information Sciences 436-437 (2018) 162-177 165

4 fitness
0 A e —
\ = v
X Pg XZ
(a) Py, close to a local optimum
p fitness
A
Pg

(b) P, close to global optimum

Fig. 1. The evolutionary state of swarm in complex search space.

Value of T

Fig. 2. Direction adjustment probability with T.

P; after each iteration, P; and f(P;)! will be updated. The situation that all particles’ best position are not improved in one
iteration can be described as Eq. (2),

S FRY - fR) =0 (2)

i=1

where n is the size of the population, and t is the number of iteration. Obviously, the characteristic that all particles’ best
position don’t get improved after one iteration may reflect that the swarm has got trapped into local optimum.

In order to avoid swarm falling into local optimum and guarantee the efficiency of algorithm, we can adjust the swarm’s
search direction when Eq. (2) is satisfied. However, we can not make a decision that adjust the search direction of swarm
just rely on the situation described above which emerges once especially when swarm searches in a complex solution
space. As Fig. 1(b) shows, particles search for a maximum within one dimension and Pg is the global best particle close to
the global optimum. Particles in swarm at the tth iteration, e.g., X and X{ may search along the direction to Py and these
particles’ best position will not be improved in the t + 1th iteration, and in this case the Eq. (2) is satisfied too. However, in
the long-term evolution of swarm, Pg has the potential ability to lead the swarm to improve and it is promising for swarm
to search the global optimum in the next several iterations.

Therefore, for the purpose of avoiding that swarm gets trapped into local optimum and taking full advantage of Pg's
evolutionary potential, we propose a tolerance based search direction adjustment mechanism (TSDM), which can help swarm
comprehend the state of evolution during the iteration of algorithm to prevent the swarm from falling into local optimum
and adjust the search direction at a proper time.

In fact, as the number of occurrences of the situation that all particles’ best position are not improved increases, the
probability that swarm gets trapped into local optimum will also increase, then the swarm need to adjust it’s search direc-

166 E. Wang et al./Information Sciences 436-437 (2018) 162-177

tion timely. We denote a variable tolerance of the swarm by T, and T is used as a counter and initialized to 0. If all particles
are not improved after one iteration, we can update the parameter T as the following Eq. (3).

T=T+1 (3)

It is obviously that, the swarm will be more likely to get into local optimum as the value of T becomes larger, which
means the swarm should adjust it’s search direction. We denote the probability that swarm adjust it's search direction as
Probggjyse, and Probgg;,s, is empirically obtained by the following tolerance Eq. (4).

exp(T) —1
&pll) -1 (4)
exp(10) — 1

Here Probgj,s is updated after each iteration. Fig. 2 shows how Prob,gj,s; changes with T. If Probg, is larger than a

random number belongs to [0, 1], the swarm will stop learning from the current P; and adjust it’s search direction to a new
particle. Details of the procedure are shown as below in Algorithm 1.

PrObadjust =

Algorithm 1 Tolerance based search direction adjustment mechanism.
1: Initialize T = 0;
n
2:if (X f(R)" — f(R)" == 0) then
i=1
3 T=T+1;
4: end if
5. Generate a random number rand() between [0, 1];
6
7
8

if (% > rand()) then

Stop the swarm from learning the current P,
: end if

As shown in the Algorithm 1 and Fig. 2, when the tolerance value of swarm, i.e., T is small, Probyg;,s is determined
by T and is more likely smaller than a random number which belongs to [0, 1], then swarm will still learn from current
Pg. Pg's potential leading ability will be fully utilized in the next several iterations especially when Py is close to the global
optimum as shown in Fig. 1(b). If all particles are still not improved in the next several iterations, the value of T will increase
continuously and the swarm is more likely to fall into a local optimum, then the value of Probgj,s is probably larger than a
random number belongs to [0, 1] and the swarm will adjust it’s search direction by learning a new particle. The new particle
is called Candidate and the detail of generating a Candidate is presented in Section 3.2. Then the swarm may jump out of
the current local optimum after learning from Candidate for a period of iterations. In summary, the strategy, i.e., TSDM can
take full advantage of Pg’s potential leading ability under the premise of helping swarm jump out of local optima.

3.2. Self-learning based candidate generation strategy

In ALPSO, all particle learn from Pg at the beginning, swarm use the TSDM to determine whether it need to adjust its
search direction. When the swarm is likely trapped into a local optimum, it will adjust its search direction by learning from
a new particle which presented as Candidate. It is easy to randomly generate a Candidate in the search space and swarm can
learn from the generated Candidate to jump out of the current local optimum. However, the randomly generated Candidate’s
ability to lead swarm to evolve may not be guaranteed especially when swarm searches in a complex space, it is more likely
that the Candidate will lead swarm into another local optimum. In order to generate the Candidate effectively, we propose
a self-learning based candidate generation strategy by which the swarm learns its own advantages and makes full use of
every particle’s excellent historical best structure of solution during each iteration of algorithm.

It is obviously that the current Pg's fitness value is still the best, and Py still maintains good solution structure in most
out of D dimensions. So Pg's solution structure is worth learning when generating the Candidate. In addition, because the
fitness value of a particle is determined by the particle’s solution structure of all D dimensions, which is represented as
Eq. (5).

f(Particle;) = f(x!,x?,...,xP) 5)

1271

Therefore, the particle whose fitness value is slightly worse may have good solution structure in some particular dimensions,
and it is also worth learning under this situation.

Fig. 3 shows a evolutionary state of swarm in two certain dimensions. Particles search for a maximum in each dimension
and the red curve illustrates the variation trend of fitness value in each dimension. Pg is the current global best particle of
swarm, P; and P, are two individual best position of X; and X;, respectively. It can be seen that P; has the best solution
structure in 1th dimension but P; has a little better solution structure than P, in 2nd dimension. Because the fitness value of
a particle is determined by the particle’s solution structure of all D dimensions, as Eq. (5) described, Py will not be replaced
by P; and we may neglect the good solution structure that P; holds in 2nd dimension, which is also worth learning when
generating Candidate.

E. Wang et al./Information Sciences 436-437 (2018) 162-177 167

 fitness

: Yo

(a) 1*" dimension

(b) 24 dimension
Fig. 3. The evolutionary state of swarm in two certain dimensions.
For the above reasons, Candidate will be generated not only according to the Pg but also the individual best solutions

that all particles hold. And Candidate(candidate®, candidate?, ..., candidateP) is the Candidate particle with D dimensions.
The detail of generating Candidate is described as follows in Algorithm 2.

Algorithm 2 Self-learning based candidate generation strategy.

1: for each dimension d from 1 to D do
2: Generate a random number rand() between [0, 1];

3 if Probcgugigate > rand() then

4 Candidate = P;

5 else

6: randomly select two P, and Py from the swarm;
7 if f(P:(k)) < f(P,(m)) then

8 Candidate? = P + Gaussian(c'9);
9 else

10: Candidate? = P4 + Gaussian(c?);
11: end if

12: end if

13: end for

Here, Probcgngidare iS the probability between [0, 1] that Candidated will obtain the structure of Pgd in dth dimension.
Obviously, as the value of Probcgugigqe increases, the generated Candidate will be more similar to Py, on the contrary, the
Candidate may be quite different from Pz and has the ability leading swarm jump out from current local optimum. Then ot
is standard deviation variable which reflects the distribution of all particles’ best solution, in the swarm with n particles it

is obtained by the following Eqs. 6 and (7).

n
Average! = % > P (6)
=1
1 n
d
od = \/n 21: (P4 — Averaged)? (7)
i=

Considering that the goal of generating Candidate is to lead the swarm jump out from local optima, it may be inefficient
to reconstructed the solution structure of Candidate randomly within the search space. To make sure that the reconstructed
solution structure is not too bad, we randomly select two particles P;(k) and P;(m), and choose the more excellent one as an
example with a Gaussian offset value determined by o¢. As the process of selecting is random, theoretically all particles in
the swarm can provide their own search information to the generating of Candidate. Candidate may get a superior solution
structure to the current Pz and is more likely close to global optimum, so swarm may jump out of local optima by adjusting

168 E. Wang et al./Information Sciences 436-437 (2018) 162-177

Table 1
The 12 basic benchmark functions.
Functions Domain Name
fix) = é x? [-100, 100] Sphere
Fa6) = -l + [T [-10.10] Schwefels P2.22
) = il (_ilxj>2 [-100,100] Quadric
i=1 \j=
fax) = "i: [100(xi1 — x2)2 + (x; — 1)?] [-10, 10] Rosenbrock’s
iz
fs(x) = fl (X +0.5])2 [-100, 100] Step
i=
fex) = i] —xsin (y/x;) +418.9829n [-500, 500] Schwefels
i=
o) = il [x2 - 10cos (27x;) + 10] [-5.12,5.12] Rastrigin
iz
fs(x) = Xn% [y,z —10cos (21y;) + 10] [-5.12,5.12] Noncontinuous Rastrigin
iz
fox) =20 + e — 20exp <70A2 1 i}x,? —exp (}7 ilcos (2m<,-)> [-32,32] Ackley
iz iz
fo(®) = i} % -]ﬂl1 cos (%) +1 [—600, 600] Griewank
i i

fu) =1 {105ir12 Ty +'§: i = 1?[1+10sin® (ryi) | + i — 1)2} + il u(x;, 10,100, 4)

[-50, 50] Penalized
fra(x) =0.1 {sinz(an;) + ill (% = D?[1 +sin® Brxip1)] + (xa = 121+ sin2(27rx,.)]} + 21 u(x;, 5,100, 4)

[-50, 150] Penalized

it's search direction to Candidate and global optimum may be found after a period of iterations. In conclusion, this strategy
ensures the algorithm’s ability of exploration by utilizing all particles’ individual best solution structure and reduces the
effects on the rate of convergence at the same time.

3.3. Competitive learning based prediction strategy

As described above, the Candidate is randomly generated as a new learn object. So its ability to lead the swarm can't
be guaranteed. It’s reckless for the algorithm to replace the current P; with Candidate without any proving on the ability of
Candidate. In addition, the current P; may still have a better structure of position than Candidate which is worth learning.
To enhance the exploitation of algorithm and take advantage of the current Py and Candidate, we propose a competitive
learning strategy to predict the potential leading ability of Candidate in ALPSO.

After a Candidate has been generated, ALPSO will predict the potential leading ability by evaluating the performances of
the swarm in which the particles learn from the current P; and Candidate in the next time of iteration, respectively. The
velocity of these two particles will update according to the following rules.

Once the swarm learns from the current Pg, the velocity will be updated by the following Eq. (8):

v = ov! + cr{ (P — x{) + cord (P —) (8)
And if the swarm learns from the Candidate, the velocity will be updated by the following Eq. (9):
v = ovd + 114 (P? — x%) + coré (Candidate? — x¢) 9)

There is a competitive relationship between the current P, and Candidate, after one time iteration and the swarm will
choose the better one as the new Pg in the next several iterations, and the worse particle will then learn from the better
one to update the status of itself. This is why we name it as “competitive learning”. In order to measure the ability leading
swarm of Pg and Candidate conveniently, the Eq. (10) is described as follows,

n
Competitiveness, =Y f(x)'™" — f(x;)" (10)
i=i
where L stands for the learn object of the swarm. If Competitivenessp, is larger Competitivenesscangigate. it means the improve-

ment when swarm learns from the current Py is better, and vice versa. Then swarm will choose a better one as the new Py
in the next iteration. Details of this strategy is concluded as Algorithm 3.

3.4. Framework of ALPSO algorithm

Now, we can sum up the framework of this ALPSO algorithm in the following Algorithm 4.

E. Wang et al./Information Sciences 436-437 (2018) 162-177

Table 2
The 28 CEC'2013 benchmark functions.

No. Functions Optimum
13 Sphere function —-1400
14 Rotated high conditioned elliptic function —1300

Unimodal 15 Rotated bent cigar function -1200

functions 16 Rotated discus function -1100
17 Different powers function —1000
18 Rotated Rosenbrocks function -900
19 Rotated Schaffers F7 function -800
20 Rotated Ackleys function -700
21 Rotated Weierstrass function —600
22 Rotated Griewanks function -500
23 Rastrigins function —400

Multimodal 24 Rotated Rastrigins function -300

functions 25 Non-continuous rotated Rastrigins function -200
26 Schwefel’s function -100
27 Rotated Schwefel’s function 100
28 Rotated Katsuura function 200
29 Lunacek-Bi-Rastrigin function 300
30 Rotated Lunacek Bi-Rastrigin function 400
31 Expanded Griewanks plus Rosenbrocks function 500
32 Expanded Scaffers F6 function 600
33 Composition function 1 (n = 5,rotated) 700
34 Composition function 2 (n = 3,unrotated) 800
35 Composition function 3 (n = 3,rotated) 900

Composition 36 Composition function 4 (n = 3,rotated) 1000

functions 37 Composition function 5 (n = 3,rotated) 1100
38 Composition function 6 (n = 5,rotated) 1200
39 Composition function 7 (n = 5,rotated) 1300
40 Composition function 8 (n = 5,rotated) 1400

169

Algorithm 3 Competitive learning based prediction strategy.

1:
2:

© %N RWw

for iteration from t to t + 1 do
for each particle i and i from 1 to n do
Competitivenesscangigate+ = f (¥ — f(x)F;
end for

: end for
: for iteration from t to t + 1 do

for each particle i and i from 1 to n do
Competitivenessp,+ = f(x')*1 — f(x)';
end for

: end for
: if Competitivenesscangigace > Competitivenessp, then

Update P,: P, = Candidate;
T =0 /] T is the tolerance counter of the swarm;

: else

P, doesn’t change;
T=T-1/|Tis the tolerance counter of the swarm;

. end if

3.5. Computational complexity of ALPSO

Compared with the basic PSO, the main difference of ALPSO is the if conditional statement (from line line 9 to line 14).

Obviously, the Algorithm (1) is used to update the variable T and Probggj,s;, and the computational complexity of which is
only (1). In the Algorithm 2, if the D dimensions solution structure of Candidate is generated, the computational complexity
of generating a Candidate is O(D). Suppose N is the size of the swarm, regarding to algorithm (3), which performs one
iteration by applying swarm learn the P; and Candidate respectively, its computational complexity is O(N-D). Therefore, the
if conditional statement’s computational complexity is O(N- D).

of ALPSO is O(Ite-N-D).

As a result, if the ALPSO’s stop condition is a fixed iteration number presented as Ite, the entire computational complexity

170 E Wang et al./Information Sciences 436-437 (2018) 162-177

Algorithm 4 Framework of ALPSO.
1: Initialize all particles’ positions and velocities within the search space;

2: Initialize T = 0, Probggjus =0 ;

3: Evaluate the fitness value of every particle;

4: Update P! and P; ;

5: while (stop condition in not reached) do

6: Update all particles’ X' and V/;

7. Evaluate the fitness value of every particle;

8: Update Pf and Pf;

9: if P> rand() then

10: stop the swarm learning from the current Py;

11: Use the algorithm 2 to generate a Candidate particle;
12: Use the algorithm 3 to choose a better particle as new P, from the current P, and the Candidate;
13: Use the algorithm 1 to update T and Probgj,s;;

14: end if

15: end while

Table 3
Parameters settings.
Algorithm Parameters
GPSO w=04,c=c=2
GPSO with decreasing weight @ =[0.4,0.9],¢c; =¢; =2
LPSO X =0.7298, c; = c; = 1.49445
DMS-PSO X =0.7298,c1 =c, =1.49445, M =4,R =10
CLPSO w =[0.4,0.9], c = 1.49445, gapM = 7
ALPSO w=[04,09],c1=c, =2
Table 4
Results comparison on 12 basic functions.
ALPSO GPSO w =04 GPSOw =[0.4,0.9] LPSO CLPSO DMS-PSO
fl MEAN 1.70E-93 9.12E-162 9.25E-51 4.57E-23 2.02E-29 7.68E-28
SD 1.24E-91 3.95E-161 3.97E-50 1.02E-22 3.70E-29 1.62E-27
f2 MEAN 2.11E-28 6.22E-91 2.25E-29 2.82E-12 1.68E—-17 3.28E-13
SD 7.52E-27 1.89E-90 4.41E-29 9.54E-12 2.82E-17 1.24E-12
3 MEAN 6.61E—08 8.12E-11 1.05E-01 1.38E+02 1.75E-03 1.38E+01
SD 2.14E-07 1.07E-10 8.94E-02 9.08E+01 2.54E-03 1.19E+01
f4 MEAN 1.78E+01 1.98E+01 2.68E+01 4.20E+01 2.64E+01 2.32E+01
SD 4.12E+00 2.21E+00 2.30E+01 2.71E+01 2.02E+01 9.60E-01
s MEAN 0.00E+00 1.83E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
SD 0.00E+00 7.86E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fe MEAN 141E+03 4.57E+03 2.65E+03 3.29E+03 2.59E+03 3.23E+03
SD 3.23E+02 8.12E+02 6.39E+02 559E+02 4.67E+02 5.78E+02
f1 MEAN 5.12E-14 5.29E+01 3.20E+01 3.70E+01 3.92E-12 2.32E+01
SD 6.53E-14 1.77E+01 1.31E+01 8.08E+00 3.88E—12 4.51E+00
18 MEAN 0.00E+00 2.85E-+00 4.50E-01 4.35E+00 0.00E+00 1.95E+00
SD 0.00E+00 1.93E+00 7.40E-01 1.68E+00 0.00E+00 2.16E+00
f MEAN 1.04E-14 1.41E+00 1.02E-14 3.98E-11 111E-14 3.30E-14
SD 1.07E-15 9.49E-01 4.20E-15 1.33E-10 3.15E-15 2.75E-14
flo. MEAN 0.00E+00 1.80E-02 2.04E-02 1.53E-02 1.62E-02 4.31E-03
SD 0.00E+00 2.06E—02 1.84E—-02 1.07E-02 1.37E-02 8.41E-03
m MEAN 1.57E-32 6.22E-02 2.07E-02 4.15E-02 3.99E-30 2.75E-28
SD 0.00E+00 1.41E-01 4.15E-02 5.08E-02 1.29E-30 1.10E-27
fl2 MEAN 135E-32 227E-01 4.39E-03 9.30E-03 1.94E-30 1.10E-03
SD 0.00E+00 5.02E—01 5.38E-03 2.10E-02 3.98E-30 3.30E-03

4. Experimental study
4.1. Benchmark functions and parameter settings

In order to verify the performance of the ALPSO algorithm, here we use 40 test functions from two groups in our ex-
periments. The first group has 12 basic functions (f1-f12), which are shown in Table 1. The first five functions (f1-f5) are
unimodal functions and the next seven functions are multimodal functions. By doing experiments on these functions, we
can verify that if the ALPSO can maintain the fast convergence feature and have the ability of dealing with multimodal

E. Wang et al./Information Sciences 436-437 (2018) 162-177 171

Table 5
Results comparison on 28 CEC'2013 functions.
ALPSO GPSO w =04 GPSOw =[0.4,0.9] LPSO CLPSO DMS-PSO
f13 MEAN 2.09E-13 9.68E+02 3.41E403 1.18E+02 2.30E4+02 2.84E-13
SD 113E-13 1.42E+03 2.10E+03 2.38E+02 4.67E+02 1.29E-13
fl4 MEAN 554E+06 5.07E+06 1.49E+07 1.88E+07 1.55E+07 6.77E+06
SD 219E+06 6.36E+06 1.69E+07 2.33E+07 2.62E+07 2.23E+06
f15 MEAN 1.38E+09 2.00E+10 7.21E+10 2.18E+09 5.72E+09 1.31E+08
SD 1.30E+09 1.56E+10 7.31E+10 2.09E+09 120E+10 1.36E+08
fl6 MEAN 9.85E+02 2.50E-+03 1.77E4+04 6.98E+03 2.69E+03 1.04E+03
SD 2.57E+02 1.52E+03 2.18E+04 1.18E+03 9.83E4+02 3.11E+02
f17 MEAN 227E-13 9.38E+02 2.35E+03 9.24E+01 5.65E+01 1.34E+01
SD 6.23E-14 9.30E+02 1.55E+03 1.02E+02 7.04E+01 3.82E+01
f18 MEAN 4.16E+01 1.14E+02 3.26E+02 6.76E+01 5.72E+01 5.22E+01
SD 1.68E+01 8.28E+01 3.30E+02 1.99E+01 2.39E+01 1.54E+01
fl19 MEAN 137E+02 1.49E+02 1.57E+02 6.65E+01 1.03E+02 3.49E+01
SD 5.40E+01 4.40E-+01 6.21E+01 4.70E+01 451E+01 2.01E+01
f20 MEAN 20.893 20.934 20.944 20.937 20.915 21.052
SD 0.050 0.055 0.048 0.035 0.058 0.070
21 MEAN 20.059 27.906 21.639 20.927 24.881 16.139
SD 2.268 3.761 3.052 3.723 4.670 3311
f22 MEAN 216E+00 2.64E+02 9.56E+02 1.14E+02 3.40E+01 1.18E+01
SD 448E+00 3.17E+02 6.83E+02 7.22E+01 450E+01 3.23E+01
f23 MEAN 3.53E-11 1.18E+02 1.57E+02 5.67E+01 2.10E+01 2.92E+01
SD 149E-10 2.97E+01 5.61E+01 1.33E+01 1.39E+01 7.33E+00
f24 MEAN 1.29E+02 1.43E+02 1.42E+02 1.56E+02 1.01E+02 5.92E+01
SD 3.37E+401 4.65E-+01 4.51E+01 5.99E+01 2.89E+01 2.51E+01
f25° MEAN 2.02E+02 2.30E+02 2.18E+02 2.03E+02 180E+02 9.19E+01
SD 3.62E+01 4.99E+01 4.40E+01 2.16E+01 2.97E4+01 2.59E+01
f26 MEAN 3.15E+02 2.61E+03 2.48E+03 2.53E+03 1.76E+03 1.56E+03
SD 8.59E+01 5.59E-+02 5.64E+02 9.12E+02 5.18E+02 3.49E+02
27 MEAN 3.20E+03 4.23E+03 5.67E+03 6.72E+03 4.31E+03 3.41E+03
SD 5.41E+02 6.13E+02 1.52E+03 347E+02 6.71E+02 6.93E+02
f28 MEAN 1491 2.100 2137 2.210 1315 1.901
SD 0373 0.460 0.387 0.390 0.358 0.779
f29 MEAN 33.71 104.84 71.89 90.08 52.44 83.22
SD 3.919 27.35 23.95 12.32 794 20.25
f30 MEAN 30.00 103.81 75.60 83.65 39.24 63.32
SD 1.61E-08 2342 52.52 16.11 4.06 9.96
f31 MEAN 2.77E+00 6.28E+02 4.48E+02 571E+00 4.27E+00 6.04E+00
SD 8.79E-01 1.41E+03 1.42E+03 193E+00 5.21E+00 1.58E+00
f32 MEAN 11.012 11189 11420 11.338 11.606 9.165
SD 0.477 0.587 0.536 0.601 0.683 0.909
f33 MEAN 327E+02 3.71E+02 7.09E+02 447E+02 3.31E+02 3.35E+02
SD 6.5E+01 1.29E+02 2.48E+02 1.06E+02 9.9E+01 8.5E+01
f34 MEAN 5.82E+02 3.10E+03 2.57E+03 2.68E+03 188E+03 1.34E+03
SD 2.31E+02 7.87E+02 9.01E+02 1.14E+03 6.09E+02 4.07E+02
f35 MEAN 4.20E+03 5.52E+03 5.07E+03 6.80E+03 538E+03 3.60E+03
SD 7.25E+02 1.01E+03 1.21E+03 543E+02 598E+02 5.58E+02
f36 MEAN 2.77E+02 2.83E+02 2.80E+02 2.70E+02 2.27E+02 2.48E+02
SD 1.62E+01 2.30E+01 1.28E+01 7.65E+00 1.01E+01 9.97E+00
f37 MEAN 295E+02 3.08E+02 3.02E+02 2.94E+02 2.86E+02 2.76E+02
SD 5.99E+00 1.29E+01 1.36E+01 9.63E+00 1.05E+01 1.05E+01
f38 MEAN 2.32E+02 3.53E+02 3.52E+02 2.58E+02 2.33E+02 2.69E+02
SD 6.31E+01 7.99E+01 7.93E+01 7.66E+01 6.52E+01 6.90E+01
f39 MEAN 9.17E+02 1.09E+03 9.81E+02 1.13E+03 9.47E+02 6.95E+02
SD 6.07E+01 5.85E+01 1.21E4+02 1.41E+02 1.08E+02 1.16E+02
f40 MEAN 3.00E+02 159E+03 2.21E+03 1.13E+03 542E+02 4.11E+02
SD 8.66E-13 7.29E+02 4.41E+02 4.06E+02 3.79E+02 3.27E+02

functions. The second group has 28 functions (f13-f40) shown in Table 2 which are taken from the CEC'2013 test suit. De-
tails of these functions can be find in the report [12]. The first five functions (f13-f17) are unimodal functions, the next 15
functions (f18-f32) are multimodal functions and the last 8 functions (f33-f40) are composition functions. Every functions’
search space is complex, and we can testify the comprehensive performance of ALPSO by the experimental study on these
functions.
The global optima of these functions shown in Table 1 are 0, the Domain is search range of every dimension.
X, |xi| < 0.5

In f8, the y; is update by y; = {roungi(in)’ | > 0.5°

In f11, the y; is update by y; =1+ J(x; + 1) .

172

E. Wang et al./Information Sciences 436-437 (2018) 162-177

20 20
eof 2
)
£ E
E40 €0
)
E60 £2
g 3 2 e
& ew 2 e &
E100 Es
E50 s
0 ~o=creo ~o=arso
E140 i Lpso E10F | teso
E80F | o cieso ——cLpso
E160 omsPsO E12 oMSPSO
——aeso - aeso - apso
E1a

E
0 20000 40000 80000

120000

160000

200000

0 20000 40000 80000 120000

160000 200000

0 20000 40000 80000 120000 160000 200000

6o
©-GPSO orse 12000, e
%0 —6—GPso(decreasing w) | oo
(pso 504 (pso
—=—atrso ——cipso Baiess
80 | DS PSO —=—cLpso
| ovses0 L ouen 1000 v
A . K pso el
ot § aooo |
= {1 \
HETR\ . g |\
L 5 5000
w0 \
2 & N - _\
- 4000
g L NG g
w \ N
-
0 e 2000 \\\
0 =
0 20000 40000 80000 000 te000 200000 0000 120000 160000 200000 o0 20000 40000 50000 0 teo0 200000
FEs FEs
—o—Grso =
| —9— GPSO(decreasing w) 90 | —0— GPSO(decreasing w)
PO i LPso
——atrso . ——atrso
oS Ps0 oS P50
—+— AP0 —+Aipso
&
it \ i
| A h—h
| [—e—apso
E12
——pso
——ctrso
E-14 DMS-PSO
e nirso
B = g e e
o 20000 40000 80000 120000 160000 200000 80000 120000 160000 200000 0 20000 40000 80000 2000 160000 200000
FEs FEs
&0 €0,
oo S-arso ('S —
s E5 E5 et
\ arso S\ : .
s o cipso \ "
\ ousso € 2 eof o
\ —*—ALPSO N
osH | 009 LN
\ es Es N
of| & >
A \ e e
Eosf| \ \ g g
H N &
\ E15 RN E15
1 L *
\ \ E-20 ¢ E-20
15 \ \ s
\ \ =arso - om0
) \ \ e2s \ . e2s .
. - tso - trso \
\ —=—cLpso s —=—cLpso
25 \ €30 oS P50 — oy £30 oS P50 \
\ e nipso 1 —nipso $
ess ess
0 20000 40000 0000 20000 160000 200000 0 20000 40000 a0000 2000 teo00 200000 0 20000 40000 80000 2000 teo00 200000
FEs FEs FEs

Fig. 4. Convergence process on 12 basic benchmark functions.

k(xj —a)ym,x; > a
In f11 and f12, u(x;,a,k,m){0, —a <x; <a
k(=x; —1)m,x; < —a

To validate the performances of the ALPSO, five representative variants of PSO are chosen to compare with ALPSO. The
first one is the global version PSO (GPSO), in the GPSO particles always learn from the Pg, so it has the feature of fast
convergence when dealing with unimodal problem. The second one is the global version PSO which is designed to improve
the swarm’s ability of global search, and the inertia weight is linearly decreased from 0.9 to 0.4. The third one is local
version of PSO (LPSO) using a ring topology. The fourth one is DMS-PSO, and the fifth one is CLPSO. The parameter settings
of each algorithm are shown below in Table 3. The parameter M and R in DMS-PSO stands for the size of subswarm and

regrouping period, respectively. The parameter gamM in CLPSO is the refreshing gap of a particle.

To make it fair when comparing experimental results of using different algorithms, each algorithm will run on the cor-
responding benchmark function independently 50 times and the mean error of results will be displayed in the tables of
results comparison shown below. Here, the dimension of all benchmark functions D is set as 30. The population size N in

each algorithm is set as 20. The maximum of the fitness evaluation FEs number is 2 x 10°.

E. Wang et al./Information Sciences 436-437 (2018) 162-177 173

——ars0 [Fe—arso ~e—ceso

Pso LPso LPso

o0 —=—cLpso 16 —e—cLeso —e—cLeso

b DMS.PSO. NS PSO NS PSO
| ALPso —apso —aLpso

E
Eror

\ : tw
555 o b oo oo
Ls s 08 N
= —f—8-—g- 3

-
e

==

B F ¥ f o
0 20000 40000 80000 120000 160000 200000 0 20000 40000 80000 120000 160000 200000
FEs FEs

(b) f14 (c) f15

2000 - ALPSO

500 l “ATM

o _
0 20000 40000 80000 120000 160000 0 20000 40000 80000 120000 160000 200000
FEs

(d) f16 (e) f17

Fig. 5. Convergence process on 5 unimodal functions of CEC’2013.

4.2. Results comparison on convergence accuracy

The comparison results on convergence accuracy including mean error (MEAN) and error’s standard deviation (SD) which
are listed in Tables 4 and 5. Here, we mark the best results performed by those algorithms on each test functions with bold
font, and mark the second best results of them with underlined.

As the value of MEAN shown in Tables 4 and 5, we can obviously see that GPSO performs well on some basic unimodal
functions (f1-f3), but gets bad results when dealing with multimodal functions and the unimodal functions with complex
search space on CEC'2013 test suit. A possible reason is that, since the inertia weight is linearly decreased in GPSO, it
helps GPSO adjust the balance between the exploration and exploitation and have a good convergence when dealing with
unimodal problems; while for multimodal problems, the linearly changed weight can’t adjust well along the evolving process
and get good results. And for LPSO, it has the ability of maintaining the diversity of population by producing restrictions
on global search, the structure of particles may not suit all test functions, so it can only performs well on some specific
functions (i.e., f5, f9, f19).

As we know that CLPSO and DMS-PSO have a competitive capability on solving multimodal problems and they perform
well on several test functions shown in Tables 4 and 5. Especially for DMS-PSO, it can get a second best results on several
multimodal test functions, i.e.f4, f10, f18, f22, 26, f27, f34 and f40, it even gets results that superior to ALPSO on some
multimodal test functions, i.e., f19, f24, f25 and f32. A possible reason may be that the competitive learning based strategy
used in ALPSO wastes some fitness evolutions since the search direction of swarm needs to be constantly adjusted when
swarm frequently gets trapped into local optima. On the contrary, as the results shown in Tables 4 and 5, DMS-PSO performs
poorer on 5 basic unimodal functions and 5 unimodal test functions than ALPSO. The reason is that, DMS-PSO use a multi-
swarm strategy to maintain the diversity of swarm within the entire search space, which has restriction on the convergence
speed of DMS-PSO.

As mentioned above, ALPSO can jump out from local optima and get the ability of global search by TSDM and the self-
learning based candidate generation strategy, which result in that swarm may adaptively adjust it's search direction to a
more excellent particle and stop falling into local optima especially when swarm searches in a complex space. Moreover,
ALPSO can get the ability of local search by the mechanism of competitive learning based prediction strategy, which chooses
P; with more leading ability. As the Tables 4 and 5 shows, ALPSO gets the most favorable results on 6 out of 7 basic
multimodal test functions and gets the best or the second best results on 12 out of 15 CEC’2013 multimodal test functions,
except for f19, f24 and f25, which means ALPSO has an excellent performances when dealing with multimodal test functions.
Therefore, the efficiency of ALPSO to deal with multimodal test functions is verified.

Simultaneously, from Tables 4 and 5, we can see that ALPSO is not restricted when dealing with simple unimodal test
functions. The reason is that there is no need for swarm in ALPSO to frequently adjust the search direction as the swarm’s
evolutionary state which is determined by TSDM is fine. In other words, the strategies utilized in ALPSO produce little
impact on the algorithm’s convergence speed when algorithm solves simple unimodal test functions, which resulting in
that ALPSO also performs well on all unimodal test functions described above (i.e., f1-f5, f13-f17). As for the results on

174

E. Wang et al./Information Sciences 436-437 (2018) 162-177

%0 a0 215
e e—crso ~o—crso
a0 200
- Lpso - Lpso 214 ——pso
—=—cLeso —=—cLpso —s—ctrso
700 omsPSO 0 omSPSO OIS PSO
|+ apso - aLpso 15 |~ apso
60
500
0 212
g £ 400 2 \
& & &
400 211
0
0
21 X
200)
200 b
209
100 b
100 S
) 0.8
20000 40000 50000 120000 160000 200000 20000 40000 50000 120000 160000 200000 0 20000 40000 80000 120000 160000 200000
~—ars0
|—0—GPSO(decreasing w) 600 |—9— GPSO(decreasing w)
PO)
—=—cieso —5—ctpso
oM Ps0 500 DS P50
——aeso - Apso
1000
w0
a & 300
500 200
10
100
0 = o3 1
3
0 20000 40000 80000 120000 160000 200000 20000 40000 80000 120000 160000 200000 0 20000 40000 0000 120000 160000 200000
500
o=
oo [—e—aeso
hoss o Gesosscussan
w0 —=—cLeso 0 10000 b
omSPSO s
|+ apso
. | arso
8000
*
300 = .
N A
5 > 5 200 5 e
& X & 2 000
200 . % %
a N 4000
"\S\E *\ 100
w -] .o
2000 4
3 0
0 20000 40000 50000 120000 160000 200000 0 20000 40000 50000 120000 160000 200000 0 20000 40000 0000 120000 160000 200000
° |—6—GPSO 7
[—e—apso onse
9000’ 8 —+—LPSO 00 *f» f::oﬂlﬂwsasmg W)
—#—LPSO —=—CLPso —5—CLPSO
ool N Fe S DM PSO DS P50
hhk oM PSO. ¢ ntpso e
e apso 500
7000 - . et
\ *
6000 4 400
. gl 5
& om0 - [& h
- - 300
3000 B 3 200
2000 = %
2 g 100
1000 .)
B - o =
1 3
0 20000 40000 20000 120000 160000 200000 0 20000 40000 80000 120000 160000 200000 0 20000 40000 0000 120000 160000 200000
Es Es.
600 145
e ~o—crso
%0 14
w0 - LpSO ——Leso
—=—ctpso 00 —=—cweso
oM PSO 135, OIS PSO
——apso —— apso
400 700 13
600
. L . 125
£ 300 g B
& o % &
12
400
200 s
300
200 "
100
100 108
0 0 0
0 20000 40000 80000 120000 160000 200000 0 20000 40000 a0000 120000 160000 200000 0 20000 40000 80000 120000 160000 200000

m) f30

(n) f31

(o) f32

Fig. 6. Convergence process on 15 basic multimodal functions of CEC'2013.

Error

E. Wang et al./Information Sciences 436-437 (2018) 162-177

3500 |
I

2500

1500

—o—orso
—5—GPSO(docreasing w)
1Pso

—=—cLPso
DMS-PSO
——ALPSO.

Eror

10000

soof|

60001 |

4000

2000

11000

10000

9000 [

soool-||

7000

Error

6000

5000

4000

1000
=g g =
0 3
0 20000 40000 80000 12000 160000 200000 0 20000 40000 8000 120000 160000 200000 0 20000 40000 8000 120000 160000 200000
FEs FEs FEs
—e—GPso
1o
—=—cLpso
400 oM P50
il k= ALPSO
g 2 3sof | g
& 3 %07 | &
a0 £ —6=8=2-
B
ot
100
200 250 13
0 20000 40000 80000 120000 160000 20000 0 20000 40000 80000 120000 160000 200000 0 20000 40000 80000 120000 160000 200000
FEs FEs FEs
7000
20001) —6—GPSO —6—GPSO
{ —5—GPSO(decreasing w) —5—GPSO(decreasing w)
1Pso 1PSo

1500

Error

1000

500

—+—ALPSO. 5000

Error

3000

1000

0
0 20000 40000

80000

FEs

0
120000 160000 200000 0 20000 40000

(2) 139

Fig. 7. Convergence process on 8 composition functions of CEC'2013.

80000

120000 160000 200000

FEs

(h) f40

175

composition functions (f33-f40) which are shown in Table 5, ALPSO gets the best results or the second best results on 6 out
of 8 composition functions, which presents the performance of ALPSO to solve more tough problems.

In addition, as the value of SD shown in Tables 4 and 5, we can see that the SD’s values of ALPSO on most functions
(f5-f12, f13-f18, f21-123, f26-f34, f37-f40) is much smaller than others, which means that the performance of our proposed
ALPSO is steady in convergence process.

4.3. Results comparison on convergence speed

We then conduct experiments on the convergence speed of the same 40 benchmark test functions to further testify the
convergence speed of ALPSO. Figs. 4-7 show the convergence process of the algorithms.
From the above figures, we can see that the proposed ALPSO can converge with an ideal convergence speed, especially

on multimodal functions. And from the convergence process figures of the 12 basic test functions, it can also be find that
ALPSO can converge to the global optimal value on the multimodal functions in the first group(from f5 to f12), and has the
fastest convergence speed among these algorithms. This might because that, in ALPSO, once the swarm get trapped into a
local optimum, the swarm will timely adjust its search direction by TSDM, and this mechanism help ALPSO jump out from
local optima and accelerate the searching speed especially when ALPSO dealing with these multimodel functions within a
complex search space. And from Fig. 5 -7, we can also find that, ALPSO still have a fast convergence rate and the speed
of convergence ranked first on many other functions in the second group (i.e. f13, f14, f16, f17, f18, f20, f21, f23, f26, f27 ,
f30-f40).

From the above results, we can now conclude that ALPSO can get better results than the other five algorithms, not only
on the solution accuracy but also the convergence speed, especially when dealing complex problems.

5. Conclusion and future work

In this paper, we present a hybrid PSO algorithm based on adaptive learning strategy, namely ALPSO to alleviate the
premature convergence of PSO on many complex problems. We mainly focus on the improvement of the swarm structure

176 E Wang et al./Information Sciences 436-437 (2018) 162-177

learning and particles’ local search strategy learning. As we know, the main reason that the basic PSO usually gets trapped
in local optima is the particles in the population mostly learn from the global best. Here, we employ a self-learning based
candidate generation strategy which generates a new candidate not only utilize the information from global best particle
but also the historical individual best particles in all dimensions. This strategy contributes to the improvement on the explo-
ration ability of our new algorithm. At the same time, we also propose a competitive learning based prediction strategy to
help choose the best candidate in the evolution process, which can help to find those particles with potential ability to lead
the swarm to find the global best and retain them in the population. As a result of this, the exploitation ability can also be
improved. Furthermore, for the sake of getting a good balance between exploration and exploitation, we design a tolerance
based search direction adjustment mechanism, which help decide the proper timing of the particles change the search di-
rection in the solution space. We conduct the experimental study on 40 test functions, including 12 basic test functions, 20
test functions and 8 composition functions from CEC'2013 Test Suite. The results of this ALPSO algorithm comparing with 5
state-of-the-art algorithms show it can get better convergence accuracy as well as faster convergence speed in most cases.

The experimental results show the competitive performance of ALPSO and the ability to solve complex problems such as
multimodal test problems and composition test problems is verified. As the problems in reality are getting more and more
complicated such as financial optimization problems and scheduling optimization problems, in the future, we will further
go on the theoretical analysis of the parameter settings in ALPSO, and try to investigate the applications of this ALPSO
algorithm into solving various challenging optimization problems in reality.

Acknowledgment

This work is supported by National Natural Science Foundation of China [Grant nos. 61773296, 61573157]; Research Fund
for Academic Team of Young Scholars at Wuhan University (Project no. Whu2016013).

References

[1] A. Chatterjee, P. Siarry, Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization, Comput. Oper. Res. 33 (3) (2006)
859-871.

[2] R. Cheng, Y. Jin, A competitive swarm optimizer for large scale optimization, IEEE Trans. Cybern. 45 (2) (2015) 191-204.

[3] A. Glvez, A. Iglesias, A new iterative mutually coupled hybrid GA-PSO approach for curve fitting in manufacturing, Appl. Soft Comput. J. 13 (3) (2013)
1491-1504.

[4] D.W. Gong,]. Sun, Z. Miao, A set-based genetic algorithm for interval many-objective optimization problems, IEEE Trans. Evol. Comput. PP (99) (2016).
1-1

[5] N. Kalaiarasi, S. Paramasivam, S.S. Dash, P. Sanjeevikumar, L. Mihet-Popa, PSO based MPPT implementation in dspace controller integrated through
z-source inverter for photovoltaic applications, Energies 9 (2017) 1-10.

[6] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 2002,
pp. 1942-1948.

[7] J. Kennedy, R. Mendes, Population structure and particle swarm performance, in: Proceedings of the Congress on Evolutionary Computation, 2002,
pp. 1671-1676.

[8] C. Li, S. Yang, T.T. Nguyen, A self-learning particle swarm optimizer for global optimization problems, IEEE Trans. Syst. Man Cybern. Part B Cybern. 42
(3) (2012) 627-646.

[9] J. Li, Y. Zhang, X. Chen, Y. Xiang, Secure attribute-based data sharing for resource-limited users in cloud computing, Comput. Secur. 72 (2018) 1-12.
[10] P. Li, J. Li, Z. Huang, T. Li, C.-z. Gao, W.-B. Chen, K. Chen, Privacy-preserving outsourced classification in cloud computing, Cluster Comput. (2017) 1-10.
[11] P. Li, J. Li, Z. Huang, T. Li, C.-z. Gao, S.-M. Yiu, K. Chen, Multi-key privacy-preserving deep learning in cloud computing, Future Gener. Comput. Syst. 74

(2017) 76-85.

[12] J. Liang, B. Qu, P. Suganthan, A. Hernndez-Daz, Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter op-
timization, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University,
Singapore, 2013 Technical Report 201212.

[13] JJ. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE
Trans. Evol. Comput. 10 (3) (2006) 281-295.

[14]]J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer with a novel constraint-handling mechanism, in: Proceedings of the IEEE
International Conference on Evolutionary Computation, 2006, pp. 9-16.

[15] Y. Liu, D. Gong, S. Jing, Y. Jin, A many-objective evolutionary algorithm using a one-by-one selection strategy, IEEE Trans Cybern. 47 (9) (2017)
2689-2702.

[16] T.K. Maji, P. Acharjee, Multiple solutions of optimal PMU placement using exponential binary PSO algorithm for smart grid applications, IEEE Trans.
Ind. Appl. 53 (3) (2017) 2550-2559.

[17] V.K. Pathak, A.K. Singh, A particle swarm optimization approach for minimizing GDT error in additive manufactured parts: PSO based GDT minimiza-
tion, Int. J. Manuf. 7 (3) (2017) 69-80.

[18] A. Ratnaweera, S. Halgamuge, H.C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, Evolut.
Comput. IEEE Trans. 8 (3) (2004) 240-255.

[19] A. Sedki, D. Ouazar, Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems, Adv. Eng. Inf. 26
(3) (2012) 582-591.

[20] Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the IEEE International Conference on Evolutionary Computation,
1999, pp. 1945-1950.

[21] Y. Tang, Z. Wang, J.A. Fang, Feedback Learning Particle Swarm Optimization, Elsevier Science Publishers B. V., 2011.

[22] F. Wang, Y. Zhang, Q. Rao, K. Li, H. Zhang, Exploring mutual information-based sentimental analysis with kernel-based extreme learning machine for
stock prediction, Soft Comput. 21 (12) (2017) 3193-3205.

[23] H. Wang, S. Hui, C. Li, S. Rahnamayan, J.-s. Pan, Diversity enhanced particle swarm optimization with neighborhood search, Inf. Sci. 223 (2) (2013)
119-135.

[24] H. Wang, W. Wang, H. Sun, S. Rahnamayan, Firefly algorithm with random attraction, Int. . Bio Inspired Comput. 8 (1) (2016) 33-41.

[25] H. Wang, W. Wang, X. Zhou, H. Sun, J. Zhao, X. Yu, Z. Cui, Firefly algorithm with neighborhood attraction, Inf. Sci. 382C383 (2017) 374-387.

[26] S. Wang, Y. Zhang, Z. Dong, S. Du, G. Ji, C. Feng, C. Feng, C. Feng, C. Feng, P. Phillips, Feed-forward neural network optimized by hybridization of PSO
and abc for abnormal brain detection, Int.]. Imaging Syst. Technol. 25 (2) (2015) 153-164.

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0032c
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0032c
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0032c
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0025

F. Wang et al./Information Sciences 436-437 (2018) 162-177 177

[27] H. Wu, L. Kuang, F. Wang, R. Qi, G. Maoguo, L. Yuanxiang, A multiobjective box-covering algorithm for fractal modularity on complex networks, Appl.
Soft. Comput. 61 (2017) 294-313.

[28] Z.H. Zhan,]. Zhang, Y. Li, S.H. Chung, Adaptive particle swarm optimization, IEEE Trans. Syst. Man Cybern. Part B 39 (6) (2009) 1362-1381.

[29] X. Zhou, H. Wang, M. Wang,]J. Wan, Enhancing the modified artificial bee colony algorithm with neighborhood search, Soft Comput. 21 (10) (2015)
1-11.

[30] X. Zhou, Z. Wu, H. Wang, S. Rahnamayan, Gaussian bare-bones artificial bee colony algorithm, Soft Comput. Fusion Found. Methodol. Appl. 20 (3)
(2016) 907-924.

http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30038-0/sbref0029

	A hybrid particle swarm optimization algorithm using adaptive learning strategy
	1 Introduction
	2 PSO algorithm
	2.1 Basic PSO
	2.2 Some variants of PSO
	2.2.1 Parameter modification based PSO algorithms
	2.2.2 Population topology structure analysis based PSO algorithms
	2.2.3 Evolutionary learning strategy based PSO algorithms

	3 Adaptive learning based PSO algorithm (ALPSO)
	3.1 Tolerance based search direction adjustment mechanism (TSDM)
	3.2 Self-learning based candidate generation strategy
	3.3 Competitive learning based prediction strategy
	3.4 Framework of ALPSO algorithm
	3.5 Computational complexity of ALPSO

	4 Experimental study
	4.1 Benchmark functions and parameter settings
	4.2 Results comparison on convergence accuracy
	4.3 Results comparison on convergence speed

	5 Conclusion and future work
	 Acknowledgment
	 References

